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Introduction

TWO-POINT boundary-value problems (TPBVPs) form an
important ingredient in the solution of several multiphysics

modeling and control analyses, including but not limited to guidance,
navigation, and control problems of aerospace engineering. Several
techniques to solve TPBVPs have been developed so far and the
workhorse at the core of each has been Newton’s method (cf. Bryson
and Ho [1]). In this Note, we present an implicit derivative Newton’s
shooting method to solve a class of two-point boundary-value
problems, most often encountered in the solution of optimal control
problems.

To motivate the developments of the paper, consider the optimal
control problem

min
u�t�
J� ’�x0;xf; t0; tf� �

Z
tf

t0

L�x;u; t�dt (1)

subject to

_x� f�x�t�;u�t�; t� (2)

with x�t� 2 Rn � R�, u�t� 2 Rr � R, and x1�t0�; . . . ; xq0 �t0� speci-
fied at the known initial time t0 [i.e., xq0�1�t0�; . . . ; xn�t0� com-
ponents of the initial state vector unspecified] and given that certain
components of the state vector at the terminal time lie on the
manifold:

 f�tf; x1�tf�; . . . ; xqf �tf�;pf� � 0 (3)

where  f 2 Rqf . Defining the Hamiltonian H :� L� �Tf, the
necessary conditions for extrema using the standard variational ap-
proach to functional minimization problems [1] are given by

Hu � 0; _x�t� �H�; _��t� � �Hx (4)

together with the transversality conditions

@�

@xj1�t0�
� �j1�t0� � 0 (5)

@�

@xj2�tf�
� �j2�tf� � 0 (6)

where

j1 � q0 � 1; . . . ; n; j2 � qf � 1; . . . ; n;

��t0; tf;x0;xf; �f;pf� :� ’� �Tf f; �f 2 Rqf

are the Lagrange multipliers associated with the hard terminal
constraints specified in the problem [i.e., Eqs. (3)]. Thus, the TPBVP
is obtained naturally. A strategy to solve this problem guesses initial
states (and/or) costates �xG0 ;�G0 � that are consistent with the known
initial state vector components, while satisfying the transversality
condition at initial time (5). In other words, for the given optimal
control problem, one would need to guess q0 of the initial costates
(which we denote by �G0 ) and n � q0 of the initial states (denoted by
xG0 : the components unspecified in the problem statement). These
initial guesses are used to integrate the state/costate differential equa-
tions, and the conditions at terminal time (3) and (6) are checked for
satisfaction to arbitrary tolerance. The initial guesses are updated if
the convergence tolerances are not met. This procedure is known as
the shootingmethod and is used frequently to solve TPBVPs. For the
problems with general boundary conditions considered previously,
the shooting procedure is less straightforward. This Note develops a
systematic procedure to set up a shooting method in such situations,
using the Lagrange implicit function theorem. The procedure is
subsequently employed in the solution of an example orbit transfer
problem.

Lagrange Implicit Function Theorem: Application
to Solution of the TPBVP

The Lagrange implicit function theorem [2–7] is an important
result in analysis facilitating several theoretical and practical appli-
cations in applied mathematics and engineering. The theorem is
stated as follows:

Lagrange’s Implicit Function Inversion Theorem: Given the
equation f�x� � y, where f is analytic at x� a with df=dx ≠ 0,
then the inverse function is x� g�y�, where g is analytic at
y� b� f�a�, Lagrange found the following general result:

x� g�y� � a�
X1
n�1

dn�1

dxn�1

�
x � a
f�x� � b

�
n
����
x�a
y�a��b

�
�y � b�n
n!

�

Convergence depends on f�x�.
Several versions of this classical theorem exist in the literature, and

the theorem has foundationally enabled the existence of solutions to
ordinary differential and algebraic (transcendental) equations (for
theoretical considerations, cf. [3,7–9]). The power of the theorem lies
entirely in its generality, and the applications spanning several
spheres of engineering are a testimony to this fact. The theorem and
its proof are intimately connected to the idea of differentiation of

implicit functions. We now apply this theorem to set up Newton’s
iteration for the solution of the optimal control problem set up in the
previous section.

Assume that the shooting method mentioned in the previous
section is used to solve for the initial costate conditions as indepen-
dent variables. We note in passing that this choice of independent
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variables solves the problem entirely for a local extremum, although
some of the initial states are unspecified, owing to the transversality
conditions (5). Then the conditions to be satisfied at the terminal time
[i.e., Eqs. (3) and (6)] are implicit functions of the initial costates we
are trying to determine. The n conditions at terminal time can thereby
be arranged in a vector form given by

� �tf;xf;pf;��tf�� :�

 f�tf; x1�tf�; . . . ; xqf �tf�;pf�
@�

@xqf�1�tf�
� �qf�1�tf�

..

.

@�
@xn�tf� � �n�tf�

2
66664

3
77775� 0

(7)

Therefore, it is a nonlinear functional inversion problem with n
conditions [Eq. (7)] and n unknowns to determine. Bymaking use of
the transversality conditions at initial time t0 [Eq. (5)], without loss of
generality, the unknown state vector components can be traded in
favor of the corresponding costates. That is to say that in the present
problem,xG0 and�

G
0 can be traded in favor of ann-dimensional vector

of initial costates �0. Writing the first-order Taylor series expansion
of the implicit functions about a nominal initial costate ��0 ,

��tf;xf���0 � ��0�;pf;�f���0 � ��0��

���tf;xf���0�;pf;�f���0�� �
�
d�

d�a0

�
�0���0

��a0 � HOT (8)

where ��a0 denotes admissible variation of the components of
the initial costate vector and HOT denotes the high-order terms ne-
glected in the Taylor series expansion. The transversality condi-
tions corresponding to the free initial states introduce a definitive
subspace with dependence (linear to first order) between the vari-
ations of the states and the costates. This subspace guarantees the
existence of solutions of the two-point boundary-value problem.
Making the classical Newton iteration-based shooting method
aware of this subspace was found to enhance the convergence of the
algorithm. Correcting the initial costate vector from among the
subspace of admissible variations of the initial costate function [from
Eq. (8)] characterizes the method outlined in this Note. If the initial
state conditions isfixed in the problem statement, we are naturally led
to the algorithm presented in chapter 7 of Bryson and Ho [1], as all
variations are admissible in this case. Further note that � 2 Rn is
independent of the terminal Lagrange multiplier �f. This is due to
the functional dependence of the terminal constraint expression
 f�tf; x1�tf�; . . . ; xqf �tf�;pf� purely on tf, x1�tf�; . . . ; xqf �tf�, and
pf [from the class of optimal control problems considered in Eq. (3)].

Consequently,

@�

@xj�tf�
� �j�tf� �

@’

@xj�tf�
� �j�tf� 8 j� qf � 1; . . . ; n (9)

The sensitivity (implicit) of the final conditions with respect to
the initial costate vector is calculated using the implicit function
theorem as

d�

d�a0
� @�
@�a0
� @�
@�f

�
@�f
@�a0

�
� @�
@xf

�
@xf
@�a0

�
(10)

where the first-order perturbation matrices @xf=@�a0 and @�f=@�a0
depend on the elements of the state transitionmatrix��tf; t0� at final
time, governing the state/costate closed-loop system. We first
construct the classical state transition matrix for the closed-loop
system and subsequently derive a projection matrix to directly
determine the sensitivity d�=d�a0. The closed-loop system in this
case is obtained by augmenting the state space with the costate
equation:

z �t� :� x�t�
��t�

� �

and observing that the control lawHu � 0 in most cases, establishes
u� u���. In this discussion, we concentrate on problems in which
the optimal control necessary conditions render control input as an
analytic function of the costate equation. Thus, the Eqs. (4) can be
written as

_z� H�
�Hx

� �
� g�z� (11)

with initial conditions

z 0 � z�t0� � x�t0�
��t0�

� �
� x0

�0

� �

The differential equations governing the evolution of this first-order
state transition matrix about the trajectory corresponding to the
current initial guess [written as z�t;�0 � ��0�] are given by

d

dt
��t; t0� �

�
@g

@z

�
z�t;�0����

��t; t0� (12)

with the definition

� �t; t0� :�
@x�t�
@x0

@x�t�
@�0

@��t�
@x0

@��t�
@�0

" #
(13)

and initial conditions ��t0; t0� � In, the n � n identity matrix. To
construct a general element in the admissible subspace, we consider
the first variation of the of the transversality conditions at initial time
t0 [Eq. (5)] written as

@

@x0

�
@�

@xj2 �t0�

�
�x0 � ��j2�t0� � 0 (14)

for j2 � q0 � 1; . . . ; n. This leads to a linear system of equations

�C In�q0 	
�x0

��q0�1:n�t0�

� �
� �0	�n�q0��1 (15)

with the definition

Ci;j �
�

@2�

@xi�t0�@xj�t0�

�
2 Rn�q0�n (16)

8 i� q0 � 1; . . . ; n and 8 j� 1; . . . ; n. Consequently, there exists
the nonzero sensitivity

@x0

@�a0
� @x0

@�1:q0 �t0�
@x0

@�q0�1:n�t0�

h i
� � �0	n�q0 �CT�CCT��1 	 (17)

The superscript @�a0 in the preceding sensitivity is written to indicate
that the admissibility has been accounted for in the calculation
by inverting the condition in Eq. (14) as a result of application of
Lagrange implicit function theorem on the tangent plane to the
transversality conditions of Eq. (5). Therefore, the correction matrix
to make the search span only the admissible subspace is given by

@z0
@�a0
�

@x0
@�a

0
@�0
@�a

0

" #
� �0	n�q0 �CT�CCT��1

In

� �
(18)

where the fact that @�0=@�
a
0 � In has been employed. Note that the

last n � q0 columns of @z0=@�
a
0 (i.e., q0 � 1; . . . ; n) form a basis for

the range of all �z0 such that

�C �0	�n�q0���q0� In�q0 	�z0 � �0	�n�q0��1 (19)

such that the Newton’s method search directions for ��q0�1:n�t0� are
consistent with the transversality condition variations of Eq. (15)
(Fredholm alternative theorem [10]). This is a consequence of our
choice of the variables for optimization (guess variables). The
analysis presented herein hinges greatly on this choice, because for a
different choice of optimization variables (say, the unspecified states
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are being iterated upon), one obtains a different set of equivalent
corrections to account for the dependence

d�

d�a0
� @�
@�a0
� @�
@zf

�
@zf
@z0

�
@z0
@�a0
� @�
@�a0
� @�
@zf

��tf; t0�
@z0
@�a0

(20)

with the definition of the correction matrix @z0=@�a0 as in Eq. (18).
Let us now demonstrate the method on an orbit transfer problem.

Example Application: Orbit Transfer Problem

Consider the interplanetary orbit transfer problem in which it is
required to reach an asteroid orbit from Earth in a given amount of
transfer time. The target orbit was obtained by rotating the orbit plane
of the asteroid Apophis [11] to be coplanar with the ecliptic (for
simplistic illustration in the current discussion). The earliest launch
time frame of interest was assumed to be in January 2011. To gain
initial insight into the physics of the problem and to ascertain con-
vergence uniformly with a single initial guess on the initial costate,
we report a sample solution from a larger solution set obtained by
considering a launch for each of 150 consecutive days, starting
1 January 2011, and times of flight to Apophis ranging from 130
through 200 days. The entire solution set and the associated para-
meter sensitivity calculations have been reported in [6]. The transfer
maneuver is considered to be a low-thrust transfer, but with allow-
able impulses at the initial and final times. Consequently, we seek a
solution that minimizes the impulse requirements at those times and
also thrust to steer the spacecraft matching the fixed boundary
conditions. The problem considered can be formally stated as

min 1
2
��u�tf� � uasteroid�2 � ���tf� � �asteroid�2�
� 1

2
��u�t0� � uEarth�2 � ���t0� � �Earth�2� (21)

subject to

_r� u; _�� �
r
; _u� �

2

r
� �
r2
� T sin���
m0 � j _mjt

_��� u�
r
� T cos���
m0 � j _mjt

(22)

with terminal boundary conditions

�f1 � cos���tf� � �asteroid at tf � � 1� 0

�f2 � r�tf� � rasteroid at tf
� 0 (23)

where T is the constant thrust parameter, ��t� is the flight-path-angle
time history, m0 is the initial mass of the spacecraft, j _mj is the mass
flow rate from the thruster of the spacecraft, r�t� is the radius
magnitude, ��t� is the true anomaly, u�t� is the radial component of
the velocity, and ��t� is the transverse component.

The initial conditions are specified as

r�t0� � rEarth at t0
; ��t0� � �Earth at t0

(24)

with specified initial and terminal times t0 and tf. The Hamiltonian
for the problem is

H � �ru� ��
�

r
� �u

�
�2

r
� �
r2
� T sin�

m0 � j _mjt

�

� ��
�
� u�
r
� T cos�

m0 � j _mjt

�
(25)

leading to the differential equations for the costate variables being
given by

_�r ���u
�
� �

2

r2
� 2�

r3

�
� ��

�
u�

r2

�
� ��

�

r2
; _�� � 0

_�u ���r � ��
�

r
; _�� ���u

2�

r
� ��

u

r
� ��
r

(26)

The optimal flight-path angle is determined from the necessary
condition

H� � �u
T cos �

m0 � j _mjt
� ��

T sin�

m0 � j _mjt
� 0 (27)

Note that for this problem that qf � q0 � 2 and that the trans-
versality conditions at initial and terminal times specify the velocity
mismatch at the asteroid (tf) and the minimum burnout mismatch at
the launch (t0). Canonical units have been employed in the cal-
culations [12] such that the gravitational parameter �� 1.

The optimal steering angle, following Eq. (27), is given by
�extremal � tan�1��u=���, and the transversality conditions corre-
sponding to the unknowns states are given by

�u�t0� � �
@�

@u0
���u0 � uEarth�

���t0� � �
@�

@�0
����0 � �Earth�

�u�tf� �
@�

@uf
� �uf � uasteroid�

���tf� �
@�

@�0
� ��f � �asteroid� (28)

We audit the conditions (transversality and given boundary condi-
tions) and unknowns (initial costates) as follows. At tf [the equation
corresponding to Eq. (7) for this problem],

� :�

cos���tf� � �asteroid at tf
� � 1

r�tf� � rasteroid at tf
�u�tf� � �uf � uasteroid�
���tf� � ��f � �asteroid�

2
664

3
775 (29)

Although the explicit partials and the state costate closed-loop
system can be written taking all the required partials, the required
correction matrix is given by [equivalent of Eq. (18) for the example
problem]

@z0
@�a0
�

0 0 0 0

0 0 0 0

0 0 �1 0

0 0 0 �1
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
66666666664

3
77777777775

(30)

where

C� 0 0 1 0

0 0 0 1

� �

for the present problem.
Notice the nonlinear hard boundary constraint associated with the

true anomaly of terminal time in Eqs. (29) and (23). The specification
presented herein naturally tackles the phase problem, because the
true anomaly specification is typically phased from the propagated
solution in multiples of 2�, depending on the conventions involved.

Table 1 Parameters used for numerical simulation

(cf. [14,15])

Parameter name Value

Initial time t0 35th day following 1 Jan. 2011
Time of flight �t 175 days
Thrust T 3.784 N
Initial mass m0 4545.5 kg
Fuel-consumption rate j _mj 6:7744 � 10�5 kg=s
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A numerical solution to this example application problem was
obtained using themethod developed in this paper. Parameters for the
numerical simulation are outlined in Table 1. Terminal constraint
satisfaction error (for a specified tolerance of 1e � 7) and the con-
verged initial costate are given by

 f �

�1:4439e � 009

�1:2926e � 008

�2:1845e � 009

�2:5846e � 008

2
664

3
775; �converged

0 �

0:11637
�0:029603
0:078305
0:035679

2
664

3
775

(31)

The trajectory obtained by solving the TPBVP is plotted in Fig. 1.
The initial guess used for the costate vector is given by

� 0 � � 0:0462 �0:0089 0:0278 0:0268 	T (32)

Alternatively, a naïve implementation of the Newton’s method
without the correction factor developed in this paper was found
to diverge (with the same initial guesses for the costate vector).
Standard nonlinear solvers (a MATLAB version of MINPACK [13])
obtain the same solution as provided by the modification presented
herein. It is known that the nonlinear equation solvers construct the
Jacobian via function evaluations and finite differences. Thus, the
reported results demonstrate the utility of the correction developed in
the paper to the classical shooting method, making use of the
Lagrange implicit function theorem.

Conclusions

The Lagrange implicit function theorem is applied to develop a
numerical iteration (of Newton type) procedure for the solution of

two-point boundary-value problems in optimal control. Further, a
correction matrix is derived to make the corrections of Newton’s
method remain within an admissible subspace of the known trans-
versality manifold available from the necessary conditions of the
optimal control problem. The procedure thus set up is applied to an
orbit transfer problem. The modification to Newton iterates derived
from the implicit function theorem therefore provides us optimism
about the utility of the theory of implicit functions and its gener-
alizations in similar problems of dynamic optimization.
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